Quantum Programming: A Software Revolution

Quantum Programming - A Software Revolution

Introduction

Today, Quantum Computing has emerged as an entirely new model of computing that is not based
on the logical bits upon which every classical system has been built. It needs altogether different
hardware based on qubits. The major breakthroughs in quantum hardware — including
superconducting qubits, trapped ions, and photonic systems — have created the need for robust
software and programming environments that will allow humans to interact with these machines.

Just as the digital revolution required software engineers to translate logic into code, paving the
way for Software Programming to move from assembly language to Object Oriented Programming
to script language to cloud-native microservices, the quantum revolution will need to depend on
quantum programming.

Quantum programming is not merely a new language or toolset. It requires programmers to think
differently, in terms of concepts like superposition, entanglement, and probability amplitudes
rather than deterministic state transitions. It blends physics, mathematics, and computer science
into one unique form of computation that promises exponential speeds in solving certain classes
of problems.

Market Trends of Quantum Programming

According to the MIT Initiative on the Digital Economy, investments in quantum software
companies reached about US $621 million in 2024. In Q1 2025, roughly US $264.8 million was
invested in quantum software, according to The Quantum Insider data.

The IDC and McKinsey forecast says that the global spending on quantum technologies —
including software — will exceed $10 billion by 2030. Nearly one-third of that investment will
target quantum software, programming environments, and development tools.

Companies like Classiq(Israel), building quantum operating software and algorithms and
BlueQubit (USA), building Quantum SaaS platform to integrate quantum into real world
applications have raised significant funding in recent times.

Cloud vendors like IBM, Microsoft, Amazon, and Google have all launched quantum programming
frameworks integrated with their quantum computing services. Startups such as Zapata
Computing, Xanadu, Classiq, and QC Ware are building higher-level abstractions, compilers, and

Nubo Native Solution | White Paper Page 1

Quantum Programming: A Software Revolution

application-specific quantum software, focusing on optimization, machine learning, and
chemistry.

As the market matures, demand for quantum programmers and algorithm designers has
skyrocketed. Universities are launching quantum software engineering tracks, and cloud platforms
are releasing free learning modules.

In 2025, LinkedIn listed “Quantum Software Engineer” among its fastest-growing emerging job
titles — a signal that the ecosystem is evolving from experimental physics toward applied
engineering.

Layers/Tiers in Quantum Computing

Quantum Computing has a layered architecture, much like the classical stack. Quantum
programming fits in a couple of those layers.

The Hardware Layer is the foundation layer where qubits physically exist. Quantum programmers
rarely touch this layer directly, but understanding its behavior (like noise models) helps them
optimize code performance.

The Control and Electronics Layer translate logical instructions into analog signals — microwave
pulses, laser beams, or optical paths that manipulate qubits. Control Layer APIs let developers
define gate operations abstractly, which the system then compiles into precise control sequences.

The Firmware and Compiler Layer contain the quantum programming compilers. The compilation
process includes gate decomposition, circuit optimization, scheduling operations, and fault
tolerance creation, analogous to how classical compilers optimize CPU instructions. Together,
these operations help translate information accurately from users to the quantum processor.

Common compiler toolchains include Qiskit Terra for circuit optimization, Cirqg’s transpiler for
mapping logical circuits onto physical hardware, and t|ket>from Quantinuum, a cross-platform
quantum compiler.

Nubo Native Solution | White Paper Page 2

Quantum Programming: A Software Revolution

Layers involved in classical computing circa 1950s vs current classical computing and quantum tool flows

~1950s Classical Computing Classical Today Quantum Computing

Algorithms

Algorithms Algorithms

High-Level Languages

High-level QC Languages.
Compilers.
Optimization.

Error Correcting Codes
Orchestrate classical gate
control,
Orchestrate qubit motion
and manipulation.

Compiler

Architecture

Modular hardware blocks:
Gates, registers

Assembly Language VLSI Circuits

Semiconductor transistors

Qubit implementations

Vacuum Tubes, Relay Circuits

The Middleware and Runtime layer is the crucial bridge between the high-level quantum
programs written by developers and the low-level control systems that interact with the physical
qubits. It’s similar to the JVM that allows Java to run on any OS, or to Kubernetes that abstracts
cloud infrastructure. But, unlike classical computers, quantum computers are not general-
purpose devices with fixed architectures. Each hardware platform, like IBM’s superconducting
qubits, lonQ’s trapped ions, and Xanadu’s photonic chips have its own topology, gate set, and
noise model.

The middleware must therefore translate hardware-agnostic programs into hardware-specific
instructions, manage timing, calibration, and gate execution with nanosecond precision, handle
job queuing, resource allocation, and multi-user access in cloud environments, support hybrid
execution, where quantum tasks are interleaved with classical computation, and provide error
mitigation strategies at runtime.

Some well-known middleware components are Qiskit Runtime from IBM Quantum and Hybrid Jobs
& OpenQASM 3 from Amazon Braket.

The Application and Algorithm Layer is the most important part of the quantum stack — it defines
domain specific workflows for different industries.

There are several Quantum algorithms in broad use now. Some of them are:

e Quantum Simulation Algorithms - used in chemistry, physics and material science to
simulate quantum systems. For eg., Variational Quantum Eigensolver (VQE), and Quantum
Phase Estimation (QPE).

Nubo Native Solution | White Paper Page 3

Quantum Programming: A Software Revolution

e Quantum Optimization Algorithms - used in logistics, finance, and resource
management. For eg, Quantum Approximate Optimization Algorithm (QAQOA), and Quantum
Annealing (used by D-Wave).

e Quantum Machine Learning (QML) - Combines quantum computing with Al techniques.
For eg, Quantum Kernel Estimation, and Variational Quantum Classifiers (VQC).

e Quantum Search and Cryptography Algorithms - core algorithms. For eg, Shor’s
Algorithm, and Grover’s Algorithm

These algorithms are implemented as libraries within SDKs, allowing developers to customize and
integrate them into larger workflows.

Some domain specific libraries are already available, like Qiskit Nature for Chemistry and Material
Science, PennyLane QML for machine learning, and TensorFlow Quantum for hybrid deep learning
models.

Frameworks like Cirg + TensorFlow Quantum allow end-to-end workflows that blend ML and
quantum seamlessly. Tools like Classiq and Algorithmiq let developers specify problems
declaratively (like “optimize portfolio”). Platforms like IBM Quantum and AWS Braket exposes the
full application layer through APIs and notebooks. QIR, OpenQASM 3 are some standardization
frameworks that allow interoperability between layers.

Quantum Programming: How It Works

Quantum programming combines linear algebra, probability, and physics concepts with software
engineering.

Quantum programmers in this era focus on error mitigation, hybrid algorithms, and variational
quantum circuits (VQCs) that run partially on classical hardware.

Quantum Circuits as Programs

A quantum program is typically represented as a circuit - a sequence of quantum gates that are
applied to qubits. These circuits encode algorithms that carry out tasks like factorization,
optimization, or data analysis. A quantum circuit begins with initializing qubits, followed by
applying gates, and ends with measurements that extract results. The design and complexity of a
quantum circuit determine the efficiency of the computation, making circuit optimization crucial
for real-world applications.

Nubo Native Solution | White Paper Page 4

Quantum Programming: A Software Revolution

For example, in Python using Qiskit:

from qiskit import QuantumCircuit

gc = QuantumCircuit(2)

qgc.h(0) # Apply Hadamard gate to qubit 0
gc.cx(0,1) #Apply CNOT gate to entangle qubits
qc.measure_all()

This simple program creates an entangled Bell state. The output cannot be predicted
deterministically - it depends on quantum probabilities.

Hybrid Quantum-Classical Workflow

Today’s quantum processors — typically with 50-500 qubits — belong to the NISQ (Noisy
Intermediate-Scale Quantum) era. These systems are prone to noise, decoherence, and gate
errors, limiting circuit depth and accuracy.

Since quantum devices are noisy and resource-constrained, quantum programs often run in hybrid
loops.

Classical CPU initializes parameters.

Quantum circuits run subroutines with those parameters.
Measurements are sent back to the classical optimizer.
Parameters are updated, and the loop repeats.

This hybrid model is central to algorithms like VQE and QAOA, based on the variational method of
quantum mechanics.

VQE, or Variational Quantum Eigensolver, is a general algorithm that works by variational
optimization of a quantum circuit to minimize the expectation value of a given Hamiltonian, which
is a function that represents the total energy (kinetic and potential) of a physical system. The
optimization is performed iteratively, with the quantum circuit parameters updated at each step
until the most optimal solution is determined.

QAOA, on the other hand, is a quantum algorithm that prepares a quantum state thatis a
superposition of all possible solutions to the problem. The algorithm applies a sequence of unitary
operations to the initial state, with the number of operations and their parameters being
determined by the problem the QAOA algorithm has been designed to solve.

Nubo Native Solution | White Paper Page 5

Quantum Programming: A Software Revolution

Quantum Libraries and APIs

Some popular frameworks are given below.

Framework Language Key Features

Qiskit Python Broad SDK for IBM Quantum systems, a comprehensive Python
framework with a large community, ideal for beginners and general
use

Cirq Python Circuit-based programming for NISQ devices, from Google, offering

more granular control

Q# Domain-specific From Azure Quantum, a domain-specific language for quantum
algorithm development that integrates seamlessly with classical
code

PennyLane Python A cross-platform Python library for quantum machine learning,

enabling automatic differentiation and optimization of hybrid
quantum-classical computations

Braket SDK Python A fully managed quantum computing service from AWS that provides
access to various quantum computing hardware devices and
simulators

These frameworks handle everything from circuit creation to execution, data visualization, and
noise modeling.

Debugging and Simulation

Quantum programs can’t be debugged like classical ones because measuring qubits destroys their
quantum state. A qubit, which exists in a superposition of states (like both 0 and 1, at once), is
forced into a single, definite classical state (either O or 1) upon measurement. This process is
probabilistic, and once it happens, the superposition is destroyed, and the original quantum state
is lost.

Instead, developers use quantum simulators to test and refine circuits before running them on
real hardware. These simulators mimic quantum behavior on classical computers, typically
handling up to 30-40 qubits. They help programmers visualize how qubits evolve by showing
representations such as Bloch spheres or state-vectors, making it easier to understand and
debug logic without collapsing the quantum system.

Nubo Native Solution | White Paper Page 6

Quantum Programming: A Software Revolution

Usage in the Industry

Quantum programming is already being applied in industries through proof-of-concept
applications and hybrid algorithms. In Pharmaceuticals industry, Roche, Boehringer Ingelheim, and
Pfizer use Qiskit and Q# to simulate molecular binding and protein folding. This reduces the cost
and time of drug discovery significantly compared to traditional high-performance simulations. QC
Ware and ZapQ develop chemistry libraries using variational algorithms that run on today’s NISQ
hardware.

Financial institutions like Goldman Sachs and JP Morgan use quantum algorithms for portfolio
optimization and derivative pricing. HSBC has partnered with IBM to explore quantum algorithms
for Monte Carlo simulations. Quantum algorithms like Amplitude Estimation can quadratically
speed up risk simulations — a potential game-changer for trading and risk management.

In Logistics and Manufacturing, Volkswagen used quantum programming to optimize traffic flow in
Lisbon using D-Wave’s quantum annealer. Airbus explores quantum solvers for flight scheduling
and fuel optimization. Quantum programming in optimizing problems like route planning, supply
chain management, and scheduling can revolutionize the sector completely.

Quantum programming can benefit tremendously the Cybersecurity and Cryptography industry by
designing quantum-safe cryptographic schemes and quantum key distribution (QKD) protocols
that offer unbreakable communication.

Future Roadmap

The next decade will define how quantum programming evolves — from niche experimentation to
mainstream technology. Soon, we will have better debuggers, profilers, and visualization tools, and
defined cross-platform frameworks enhancing interoperability between SDKs and hardware
vendors. Quantum Cloud Integration combining hybrid workflows in GPUs, CPUs, and QPUs
(Quantum Processing Units) seamlessly, will improve in another 1 to 3 years.

In the short to midterm, we can expect High-Level Quantum Languages, abstracting qubit
operations from business logic. Along with it, availability of domain-specific libraries for finance, Al,
and chemistry, will make quantum programming accessible to non-experts. Al-Assisted Quantum
Programming will help to auto-generate quantum circuits optimized for specific tasks.

A decade down the line, we can expect Quantum Operating Systems that take care of resource
scheduling, qubit memory management, and distributed quantum networking. Better tools, better
languages and better cloud platforms with quantum processors linked across the globe for
entanglement-based communication will democratize Quantum Skills, making Quantum
programming courses as common as cloud computing certifications today.

Nubo Native Solution | White Paper Page 7

Quantum Programming: A Software Revolution

Conclusion

Quantum programming is a revolutionary approach to software programming. Developers will
need to learn to think in wave amplitudes instead of bits, in terms of probabilistic results instead
of deterministic outcomes. It will be a different kind of computation, not just faster.

The field is nascent but moving fast. It might even move faster than the improvements in
hardware. The frameworks are maturing, and while hybrid models in today’s systems are
helping in better adoption, new advances are already bridging the gap between today’s systems
and the scalable quantum machines of tomorrow.

Quantum programming is where the future lies. Taking care of the limitations of classical
programming, it promises a fast, reliable and global vision, bringing together science and
computers cohesively to build systems of the future.

About Nubo Native Solution

Nubo Native Solution is working on a mission to democratize cloud by providing a sovereign, adaptable and
comprehensive Cloud Platform referred as Nubo Native Platform (NNP) for state-of-the-art Cloud Native
Development and Hosting.

Nubo Native Solution with its path-breaking Cloud Platform and associated Consulting and Professional
Services enables large-scale Cloud Repatriation, complex Application Modernization, API Lifecycle
Management, Al Enablement, Edge Computing and accelerated Software Development ensuring lower TCO
and improved TTM, for the Enterprises worldwide.

Compiled by Nubo Native Platform team
November 2025

Website: nubons.com
Email: contact@nubons.com

Nubo Native Solution | White Paper Page 8

